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  3+1 GLF simulations in BOUT++ 

• Turbulent transport constrains the 
pedestal gradient in the edge; 

• The linear KBM physics in EPED1 

successfully predicts the H-mode 
pedestal height and width; 

• 3+1 gyro-Landau-fluid (GLF) 
model is implemented in BOUT++ 
to include the KBM turbulence 
effects in nonlinear ELM 
simulations. 
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1. P. B. Snyder , et al., NF(2011) 



  3+1 Gyro-Landau-fluid model 

• We utilize the gyrofluid model1 developed by P. Snyder and G. 
Hammett; 

• 3+1 model: (𝑛𝑖 , 𝑣∥𝑖 , 𝑝∥𝑖 , 𝑝⊥𝑖 , 𝜛, 𝐴∥, 𝑝∥𝑒, 𝑝⊥𝑒) 

• Full FLR effects (Padé approximation): 𝑘⊥𝜌𝑖~1; 

• Parallel Landau damping: non-local transport; 
• Non-Fourier methods 

• Both in collisionless2 and weakly-collisional3 limits 

• Toroidal resonance; 

• Non-isotropic response (𝑝∥ ≠  𝑝⊥) 

• In long-wavelength limit (𝑘⊥𝜌𝑖 ≪ 1) and isotropic assumption 
(𝑝∥ = 𝑝⊥), the set of equations is reduced to 6-field Landau-
fluid model2 with gyro-viscosity. 
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1. P. B. Snyder and G. W. Hammett, PoP (2001) 

2. A. M. Dimits, et al., PoP (2014) 

3. M.V. Umansky, et al., J. Nucl. Mater. (2015) 
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Gyrofluid equations are derived by moments 

hierarchy from gyrokinetic equations 
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𝑓 𝒙, 𝒗  

𝑓 𝑅, 𝑣∥, 𝜇  

𝑛 𝑅 , 𝑢∥ 𝑅 , 
𝑝∥ 𝑅 , 𝑝⊥ 𝑅 , 
𝑞∥ 𝑅 , 𝑞⊥ 𝑅 , 

… 

Kinetic model: 6D 
𝜕𝑓

𝜕𝑡
+ 𝛻 ⋅ 𝒗𝑓 + 𝛻𝑣 ⋅

𝑒

𝑚
𝑬 + 𝒗 × 𝑩 𝑓 = 0 

Gyrokinetic model: 5D 
𝜕𝑓

𝜕𝑡
+ 𝑹 ⋅ 𝛻𝑓 + 𝑣∥ 

𝜕𝑓

𝜕𝑣∥
= 0 

Average over gyro-motion which 

𝜇 is adiabatically conserved  

Gyrofluid model: 3D 

𝑛 = ∫ 𝑓𝑑3𝑣        𝑛𝑢∥ = ∫ 𝑓𝑣∥𝑑
3𝑣 

𝑝∥ = 𝑚∫ 𝑓 𝑣∥ − 𝑢∥
2𝑑3𝑣 

𝑝⊥ = 𝑚∫ 𝑓𝐵𝜇𝑑3𝑣 

𝑞∥ = −3𝑚𝑣𝑡
2𝑛0𝑢∥ +𝑚∫ 𝑓𝑣∥

3 𝑑3𝑣 

𝑞⊥ = −𝑚𝑣𝑡
2𝑛0𝑢∥ +𝑚∫ 𝑓𝐵𝜇𝑣∥𝑑

3𝑣 

moments 



  
Full set of ion equations  

in 3+1 GLF model 
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FLR effect 

Continuity 

Compression 

Landau damping 

Toroidal closure 



  
Vorticity formulation is used with full 
electron response in 3+1 GLF model 
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FLR effect 

Continuity 

Compression 

Landau damping 

Energy flux 

Drift Alfven Wave 

Poisson equation: 

• Have better numerical property than 𝑛 𝑒 equation 

1. P.W. Xi, X.Q. Xu, et al., Nucl. Fusion (2013) 



  
Carefully chosen closures are 

essential to match kinetic effects 
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Ion Landau closures: Electron Landau closures: 

Toroidal closures: 

Gyro averaging and Padé approximation: 

Energy flux 

Toroidal closure 2 (Imaginary) 

Toroidal closure 3 (Real) 
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  Initialization (physics_init) 
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• Equilibrium cases (P0, 
N0, T0): 

• 1: 𝜂𝑖 scan profiles; 

• 2: cyclone case; 

• 4: tanh function 
profiles; 

• 5: Self-consistent 
bootstrap current grid; 

• 6: Real geometry with 
experimental profiles. 

Physics_init 

End 

Read options 

Equilibrium 

Normalization 

Coefficients 

Save profiles 



  Time evolution (physics_run) 
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Physics_run 

End 

Gyro-averaged quantities 

Closures 

Calculate other fields 

Get electric field 

Evolving equations 

• 𝑛𝑒 , 𝑇∥𝑖 , 𝑇⊥𝑖 , 𝑇∥𝑒 , 𝑇⊥𝑒 

• 𝐽∥, 𝑉∥𝑒 

• Real space: 𝑛 𝑖 , 𝑢 ∥𝑖 
• Electrostatic potential: 𝜙 

• Φ,𝐴 ∥ 

• Parallel Heat flux: 𝑞∥𝑖 , 𝑞⊥𝑖 , 𝑞∥𝑒 , 𝑞⊥𝑒 

• Toroidal resonance 

• Ion: 
𝑑

𝑑𝑡
𝑛𝑖 ,

𝑑

𝑑𝑡
𝑢∥𝑖 , 

𝑑

𝑑𝑡
𝑃∥𝑖 , 

𝑑

𝑑𝑡
𝑃⊥𝑖 

• Electron: 
𝑑

𝑑𝑡
𝑈,

𝑑

𝑑𝑡
𝐴∥,

𝑑

𝑑𝑡
𝑃∥𝑒 , 

𝑑

𝑑𝑡
𝑃⊥𝑒 
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  Basic normalized quantities 
• Normalization parameters: 𝐿 , 𝑇 , 𝑁 , 𝐵  

 𝑉 = 𝐿 𝑇  , 𝑉 2 = 𝑉𝐴
2 = 𝐵 2 𝜇0𝑚𝑖𝑁  , Ω = 𝑒𝐵 𝑚𝑖 , 𝐶𝑛𝑜𝑟 = Ω 𝑇  

 

• Define 

 

• Evolving variables                        other important variables 
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  Normalized ion equations 
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  Normalized electron equations 
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  Normalized vorticity equations 
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Where: 



  Outline 

•    Introduction 

•    Code structure 
•   Normalization 

•   Implementation 

•   Inputs 

•    Applications 
•   Benchmarks 

•   Physics results 

•    Summary 
17 



  Gyro-average operator 

• Gyro-average operator with Pade approximation: 

 

 

 

 

 

• Multiply the denominator in the operator: 

1 − 𝜌𝑖
2𝛻⊥

2 Φ = 𝜙 

• This equation is solved using Laplacian inversion in the code: 
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  Modified Laplacian operators 

• The modified Laplacian operators can be expressed as the 
subtract of gyro-average operators: 
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  Poisson equation 

• The gyro-kinetic Poisson equation is 

 

 

• Define 

 

• Poisson equation becomes 

 

• With Pade approximation 

 

 

• In the code 
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Poisson equation  

with adiabatic response 

• The adiabatic response is used in the electrostatic simulations; 

• The gyro-kinetic Poisson equation with adiabatic response is 

𝑛0𝜙 

𝑇𝑒0
+
𝑛0
𝑇𝑖0

1 − Γ0 𝜙 = Γ0
1/2

𝑛 𝑖 +
𝑛0
𝑇𝑖0

𝑏
𝜕Γ0

1/2

𝜕𝑏
𝑇 𝑖⊥ 

• After normalization and Pade approximation, the equation 
becomes 

−2𝜌 𝑖𝛻⊥
2𝜙 + 𝜙 = 1 − 𝜌 𝑖𝛻⊥

2
𝑇 0𝑛 𝑖
𝐶𝑛𝑜𝑟𝑛 0

 

• In the code 
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  Options in the input file 
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Option Description 

electrostatic Solve Poisson equation with adiabatic response, 

instead of solving the electron equations. 

eHall Electron drift wave terms 

Gyroaverage Gyro-average and FLR effect terms 

FLR_effect 

Continuity Compressible terms 

Compression Parallel viscosity 

Isotropic (default: false) Average the parallel and perpendicular pressure 

Landau_damping_i Landau damping terms for ions 

Landau_damping_wcoll_i Collisional terms in ion Landau damping 

Landau_damping_e Landau damping terms for electrons 

Landau_damping_wcoll_e Collisional terms in electron Landau damping 

Energy_flux Energy flux terms in toroidal closures 

Toroidal_closure2 The imaginary part of 𝜔𝑑  terms in toroidal closures 

Toroidal_closure3 The real part of 𝜔𝑑  terms in toroidal closures 



  Options in the input file cont. 
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• curv_model: Controls the implementation of 
curvature term (𝑖𝜔𝑑) 

• 1: 𝑖𝜔𝑑 =
𝑇0

𝑒𝐵
𝑏 × 𝜅 ⋅ 𝛻; 

• 2: 𝑖𝜔𝑑 =
𝑇0

𝑒𝐵2
𝑏 × 𝛻𝐵 ⋅ 𝛻; 

• 3: 𝑖𝜔𝑑 =
𝑇0

2𝑒𝐵
𝑏 × 𝜅 ⋅ 𝛻 +

1

B
𝑏 × 𝛻𝐵 ⋅ 𝛻 ; 

• 4: 𝑖𝜔𝑑 =
𝑇0

𝑒𝐵
𝑏 × 𝜅′ ⋅ 𝛻, where 𝜅′ =

𝑩

𝐵3
× 𝛻 𝜇0𝑃0 +

𝐵2

2
 is 

the magnetic curvature calculated in the code; 

• 5: 𝑖𝜔𝑑 =
𝑇0

2𝑒𝐵
𝑏 × 𝜅′ ⋅ 𝛻 +

1

B
𝑏 × 𝛻𝐵 ⋅ 𝛻 . 
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Our 3+1 GLF code is benchmarked with other gyro-

kinetic and gyro-fluid code in ES ITG simulations 
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• With adiabatic electron response, 
the 3+1 GLF results are in good 
agreement with other gyrofluid 
code (GLF 3+0) and gyorokinetic 
code (FULL). 

𝜙 

Adiabatic response: 
𝑛0𝜙 

𝑇𝑒0
+
𝑛0𝜙 

𝑇𝑖0
1 − Γ0 𝜙 = Γ0

1/2
𝑛 𝑖 +

𝑛0
𝑇𝑖0

𝑏
𝜕Γ0

1/2

𝜕𝑏
𝑇 𝑖⊥ 

1. C.H. Ma, X.Q. Xu, et al., PoP (2015) 



  
The Landau closure with collisions has 

implemented and tested in BOUT 
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• The nonlocal heat flux has 
closer results for the stronger 
collision case; 

• The implementation in 
BOUT++ is well benchmarked 
with Maxim’s results1. 

N0=1014cm3 N0=1013cm3 

1. M.V. Umansky, et al., J. Nucl. Mater. (2015) 



  
The linear growth rates of 3+1 and 6-field model agree 

well in lower mode numbers 
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The global beta-scan with a series of self-

consistent equilibrium 

30 

• Jet like equilibrium; 

• The temperature profile is fixed; 

• The density and pressure profiles 
increase when 𝛽 increases. 

• Weakly-collisional case, 𝜈𝑒
∗ < 0.1 

• 𝜂𝑖 = 0.685, the same for all cases. 

 



  
Kinetic physics has stabilizing effects on 

ballooning modes 

• This is kinetic ballooning modes 
(KBM) because there is no instability 
without curvature drive; 

• The real frequency is around the 
theoretical prediction; 

• Since 𝜂𝑖 < 1, threshold of KBM and 
IBM is about the same. 
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Same ion diamagnetic 

stabilizing effects! 

1. C.H. Ma, X.Q. Xu, et al., PoP (2015) 



  
The relative energy loss increases with 

increasing beta 
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• When beta increases, the 
relative energy loss of initial 
crash from all channels 
increase; 

• Convective energy loss is 
dominant because of the 
large density height; 

• Energy loss from ion is larger 
than the loss from electron; 

• Electron perturbation is 
damped by the Landau 
damping effect, which is 
larger than ions by a factor of 

𝑚𝑖/𝑚𝑒. 

 



  
KBM is unstable below IBM threshold 
when temperature gradient is large 
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0i 

2i 

• Concentric circular magnetic 
surfaces without shift; 

• The unstable threshold are 
the same for the constant 
temperature case (𝜂𝑖 = 0).; 

• The KBM is unstable under 
ideal ballooning mode 
threshold when 𝜂𝑖 = 2. 

• There is no second stable 
region in these cases 
because the Shafranov shift 
effects is missed; 

 



  
The shift increases with beta in our 

equilibrium 
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• The shift and maximum 
elongation increase with 
beta in the equilibrium. 

Radial profile of Elongation 



  
Second stable region of KBM is found 

in the self consistent beta scan 
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• Beta scan in a series of self-
consistent grids; 

• The linear growth rate for the 
ballooning mode peaks at 
𝛽 = 0.66%; 

• The KBM is unstable when 
𝛽𝑐 = 0.4% and 𝛼𝑐 = 1.8; 

• The second stable region of 
KBM is observed when 
𝛽 > 0.9% and 𝛼 > 3.75; 

• The growth rate of ideal 
ballooning mode is larger than 
KBM in this case. 

 

Parameters: 

𝑛 = 20, (𝑘𝜃𝜌𝑖 = 0.11) 
𝑞 = 2.0, 𝑠 = 2.70 

𝑅 = 3𝑚, 𝑎 = 2𝑚 

𝜖𝑛 = 1/18.6, 𝜂𝑖 = 𝜂𝑒 = 3.1 
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  Initial GLF simulations in X-point geometry 
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• The GLF simulations show reliable mode structures 

• The DIII-D magnetic and plasma profiles are ideal P-B mode stable 

• The mode is at the outside midplane side, driven by the bad curvature 

• The Landau damping and toroidal closures are turned off in these 
initial simulations 

n=30 

DIII-D 



  
The Landau damping closures have similar 

impact on the ELM size as flux-limited heat flux 

• Nonlinear simulation shows that the energy loss of am ELM 
are similar with Landau damping closure or flux-limited heat 
flux in 6-field Landau-fluid simulations. 

 37 
1. C.H. Ma, X.Q. Xu, et al., PoP (2015) 

Landau damping: 

𝑞∥𝑗 = −𝑛0
8

𝜋
𝑣𝑇𝑗

𝑖𝑘∥𝑘𝐵𝑇𝑗

𝑘∥ +
0.5
𝜆𝑗

, 𝑗 = 𝑖, 𝑒 

Flux limiting: 

𝑞∥𝑗 =
𝜅𝑆𝐻𝜅𝐹𝑆

𝜅𝑆𝐻 + 𝜅𝐹𝑆
𝛻∥0𝑇𝑗 
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  Summary 

• The 3+1 GLF model is implemented in the BOUT++ 
framework for pedestal turbulence and transport; 

• The 3+1 GLF model is well benchmarked with other 
gyrokinetic, gyrofluid and two-fluid codes in both 
electromagnetic and electrostatic regimes; 

• The energy loss of an ELM increases with beta near 
the first stable region; 

• The second stable region of ballooning mode is 
found in our self-consistent beta scan with the global 
equilibrium. 
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  Install the 3+1 module 

• Get the bout_glf git repository: 
git clone ssh://user@portal-auth.nersc.gov/project/ 

projectdirs/bout_glf/www/git/bout_glf.git 

• Switch to the modomegad branch: 
git checkout bout_modomegad 

• Compile the code (on cori): 
./configure --with-netcdf=/global/u2/c/chma/cori/local --
with-fftw=/global/u2/c/chma/cori/local 

make 

cd examples/glfkbm3-1 

make 
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  Running example 
• Launch the linear run job: 

qsub bout_cori_debug.sh 

• Get the linear growth rate: 
python growthrate.py -v -f P data 

• Example output: 
Growth rate from linear fit from -20 to -1 is: 0.1491077 
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